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Abstract— Energy management is a fundamental challenge
for legged robots in outdoor environments. Endurance directly
constrains mission success, while efficient resource use reduces
ecological impact. This paper investigates how terrain slope and
heading orientation influence the energetic cost of quadruped
locomotion. We introduce a simple energy model that re-
lies solely on standard onboard sensors, avoiding specialized
instrumentation and is applicable in previously unexplored
environments. The model is identified from field runs on a
commercial quadruped and expressed as a compact function
of slope angle and heading. Validation on natural terrain
demonstrates near-linear power–slope relationships, elevated
costs for lateral motion, and additive behavior across trajectory
segments, enabling efficient path-level energy prediction.

I. INTRODUCTION

Robots are increasingly deployed in demanding outdoor
environments such as agriculture, mining, planetary explo-
ration, and disaster response. In these domains, autonomy is
limited not only by perception and decision-making capa-
bilities but also by the ability to complete missions within
available energy resources [1]. This challenge is particularly
acute for mobile platforms operating across diverse terrains
and conditions [2]. Ensuring sufficient endurance is therefore
a prerequisite for reliable and effective operation in the field.

Energy awareness is essential for both practical and eco-
logical reasons. On the one hand, efficient energy use extends
mission duration and reduces the risk of premature task
interruption. On the other, sustainable practices in sectors
such as agriculture require machines that minimize unnec-
essary energy expenditure and reduce their environmental
footprint. Robots must therefore plan motions that simultane-
ously optimize operational efficiency and respect ecological
constraints.

Legged platforms offer unique advantages in natural and
agricultural settings where wheeled or tracked vehicles may
be less suitable. They can traverse irregular ground, adapt
to varying terrain geometries, and operate in areas where
heavy machines would damage vegetation or soil through
compaction. These properties make quadrupeds and other
legged systems attractive candidates for tasks that demand
both mobility and low environmental impact [3], [4].

However, as seen in Figure 1, the energy requirements of
legged locomotion are difficult to predict. Unlike wheeled
vehicles, where motion costs can often be related to dis-
tance and slope, legged robots rely on complex multi-body
dynamics, coordinated gaits, and repeated ground contacts.
This makes it challenging to identify which locomotion
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Fig. 1: For legged robots, the complexity of their dynamics
makes energy consumption difficult to predict. The energy
consumption of the two illustrated paths (blue: direct uphill,
red: indirect detour) is not necessarily proportional to dis-
tance: on sloped terrain, longer but smoother trajectories can
require less energy than shorter, steeper ones.

strategies are energetically most favorable under specific
terrain conditions.

This work focuses on the influence of terrain slope on
the energy consumption of quadruped robots. We analyze
how heading direction relative to an incline affects overall
energy use and how such knowledge can inform motion
planning. By modeling these relationships from onboard
measurements, we introduce a practical basis for energy-
aware navigation strategies in real-world agricultural and
outdoor environments. To this end, our contributions are

• A simple, generic and reproducible method to predict
heading dependent energy maps for quadrupeds using
only standard onboard sensors;

• A calibration procedure linking energy consumption to
the robot’s movements; and

• A field validation and demonstration of energy aware
path planning on sloped terrain.

The remainder of this paper is organized as follows.
Section II reviews existing approaches to energy modeling,
from wheeled to legged robots, and identifies the gap con-
cerning heading-dependent costs in path planning. Section III
introduces the proposed framework, including the notation,
motion model, and the methods used to construct and learn
energy maps as well as to evaluate candidate paths. Sec-
tion IV presents field experiments that validate the modeling
assumptions and illustrate the impact on path optimization.



II. RELATED WORK

Energy-aware navigation has evolved along two largely
separate paths: physics-based models for wheeled platforms
and stability-focused approaches for legged systems. This
split has created a critical gap in demanding outdoor en-
vironments where both energy efficiency and locomotion
versatility are essential for mission success [1].

Early mobile robotics treated energy consumption as pro-
portional to distance traveled, a reasonable approximation on
flat terrain where rolling resistance dominates [5]. However,
this equivalence breaks down dramatically when robots en-
counter slopes. Gravitational work introduces fundamental
asymmetries that depend on both terrain inclination and
motion direction relative to the gradient [1]. Classical energy
models for wheeled vehicles decompose power into rolling
resistance, aerodynamic drag, and gravitational components
[6]. This immediately reveals that heading direction rela-
tive to slope matters as much as slope magnitude itself.
The insight led to anisotropic cost fields where energy
becomes a function of both position and heading direction
[7]. Planners can now exploit directional asymmetries for
substantial energy savings. Such approaches demonstrate that
even moderate slopes create opportunities for optimization
through careful heading selection [8].

The fact that optimal paths depend on motion direction
motivated sophisticated geometric approaches [7]. These
frameworks treat cost as an explicit function of both configu-
ration and velocity direction [9]. Fast marching methods and
Hamilton-Jacobi formulations further enable efficient com-
putation of direction-dependent optimal paths [10]. However,
these mathematical tools remain largely disconnected from
empirical energy measurements on legged platforms. This
limits their applicability to real-world quadruped navigation
[11].

Research on quadruped energetics has pursued a funda-
mentally different path, emphasizing gait optimization, me-
chanical efficiency, and cost of transport analysis primarily
on level ground [12]. Studies establish clear relationships
between speed, coordinated gaits, and energy consumption
for various legged platforms [13]. They provide insights
into actuator efficiency and the role of leg compliance
in reducing metabolic cost. Modern quadrupeds such as
ANYmal have demonstrated robust rough-terrain locomotion
with reasonable energetic cost [4]. This pushes the analysis
toward real-world conditions while maintaining focus on
stability and traversability. However, energy considerations
typically appear as learned penalties or uniform scalars
applied to flat-ground costs rather than as primary variables
that guide global path selection. Energy remains secondary
to traversability [14].

Recent advances in perceptive locomotion have enabled
quadrupeds to navigate complex outdoor terrain with im-
pressive robustness [15]. These systems use vision and
proprioception to select footholds and avoid obstacles. They
excel at local navigation and real-time adaptation to terrain
features, yet global route choice remains driven by geometric

heuristics rather than empirically grounded energy models
[14]. Agricultural applications further highlight this gap,
where robots must balance task completion with energy
efficiency across varied terrain geometries [16]. They lack
the tools to predict how different paths will affect battery
consumption.

Unlike wheeled vehicles that may recover energy through
regenerative braking during descent, quadrupeds must ac-
tively control their limbs throughout the gait cycle [13].
This makes downhill motion energetically nontrivial. The
fundamental difference suggests that energy-optimal paths
for legged robots may involve complex heading strategies
rather than simple elevation minimization. Evidence from
planetary analogue experiments confirms that heading direc-
tion relative to slope can reverse energetic preferences [1].
Indirect traverses can be competitive with direct climbs under
certain conditions.

Recent work has begun to address energy prediction for
ground robots on uneven terrain, demonstrating that slope
direction significantly affects consumption for wheeled plat-
forms [17]. However, transfer to legged systems requires new
measurements and validation because multi-body dynamics,
coordinated gaits, and ground contacts fundamentally alter
the energy budget compared to wheels.

Many existing energy models assume access to joint torque
sensors, detailed terrain geometry, or sophisticated mechani-
cal models that complicate field deployment on commercial
platforms [18]. While such signals provide rich informa-
tion for research validation, practical autonomy requires
approaches that leverage ubiquitous sensors such as battery
management systems, odometry, and inertial measurement
units [19]. Battery electrical power serves as a conservative
proxy for mechanical work and directly relates to mission
duration. This makes it attractive for energy-aware planning
despite being less precise than torque-based estimates. As
such, we propose a generic and easy-to-calibrate energy
model that relies only on standard battery measurements.

III. THEORY

This section establishes the mathematical foundation for
energy prediction on sloped terrain. We begin with notation
and coordinate systems, describe the robot motion model,
and present the theoretical tools for constructing energy
models from empirical measurements.

A. Notations and Assumptions

Let α denote the local slope angle of the terrain, defined
with respect to the horizontal plane. The robot’s heading
relative to the slope direction is denoted by γ, where γ = 0◦

corresponds to the robot facing directly uphill, γ = 180◦ to
facing directly downhill, and γ = 90◦ to facing perpendicular
to the slope. We assume that the robot evolves in a locally
planar environment. As such, the generalized velocity (twist)
of the robot is noted as ϖ∧ ∈ se(2), of which ϖ ∈ R3 is
the coordinates of the twist [20]. Figure 2 depicts a summary
of the notations.
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Fig. 2: Coordinate system on a sloped terrain. The robot
moves with velocity ϖ(t) on a slope of angle α, oriented
with a heading γ with respect to the slope direction.

The coordinate system assumes terrain can be locally
approximated as planar over length scales relevant for en-
ergy measurement. Real terrain exhibits complex three-
dimensional structure, but this simplification captures the
first-order effects that dominate energy consumption on
moderate slopes.

B. Energy of a given path

Having established the coordinate system and geometric
relationships, we now formalize the energy computation for
robot trajectories. We define the robot’s path P as a function
from time to the Special Euclidean group SE(2) as

P : R → SE(2), (1)

where P(t) ∈ SE(2) represents the robot’s pose (position
and orientation) at time t. The associated body velocity
ϖ(t)∧ ∈ se(2) is

ϖ(t)∧ = P(t)−1 d

dt
P(t). (2)

From this, the energy required to follow a given path from
t = 0 to t = tgoal is given by the integral of the instantaneous
power, as

E =

∫ tgoal

0

⟨f(t)∧ | ϖ(t)∧⟩ dt, (3)

where f(t)∧ ∈ se∗(2) is the generalized force (wrench)
applied at pose P(t), and ϖ(t)∧ ∈ se(2) is the generalized
velocity. The above equation simplifies to

E =

∫ tgoal

0

f(t)Tϖ(t) dt, (4)

thereby simply being the inner product between two real 3×1
vectors.

The overall difficulty is the complexity of the wrench f as
it often depends on a variety of unknown and unobservable
variables. In the following, we make the assumption that the
force is only dependent on the terrain slope and the relative
pose of the robot, so that

f = α, γ : R2 7→ se∗(2), (5)

where α ∈ [0, π/2) is the slope inclination and γ ∈ [0, π]
is the heading angle as defined previously. Note that γ can
be restricted to [0, π] due to symmetry considerations (the
energy cost of approaching a slope at an angle γ is the same
as approaching at an angle 2π − γ).

Note that since the wrenches are independent of the robot’s
internal dynamics, a useful linearity property holds. If a
velocity αϖ1 (respectively ϖ2) produces an instantaneous
energy consumption of P1dt (respectively P2dt), then any
linear combination of these two motions results in an energy
consumption of (αP1 + P2)dt.

Although these assumptions are quite strong, they still
offer a good approximation and make calibration more
straightforward, since it reduces to fitting a simple low-
dimensional function that can even be handled with linear
models.

Under our terrain-only assumption, the wrench depends
on local slope and attack angle:

f(α, γ) =

fx(α, γ)fy(α, γ)

τ(α, γ)

 . (6)

At each instant, the body velocity is known and defined
by Equation 2. The wrench components Equation 6 are
determined experimentally. With both quantities available,
the path energy E follows directly from Equation 4. In
summary, the energy prediction reduces to identifying the
wrench components, thus closing the framework with a
compact and practical formulation for path-level estimation.

IV. EXPERIMENTS

This section outlines an outdoor protocol to estimate, from
onboard signals only, the components of the applied wrench
and to assemble a dataset for future energy-aware navigation.

A. Experimental Setup

We use a Unitree B1 with its stock sensor suite, shown
in Figure 1: a battery monitor (voltage and current), an
IMU that provides orientation, and legged odometry that
yields pose and body-frame velocities. The experiments take
place outdoors on a mix of a controlled ramp and natural
grassy terrain. Slopes range roughly from 5◦ to 20◦. The
robot travels along straight segments at constant speed of
0.3m s−1, using its default walking gait.

B. Data Preprocessing

The data stream is continuous and minimal: IMU ori-
entation, odometry with body-frame velocities, and battery
voltage–current pairs. Very low-speed samples are discarded
to avoid division artifacts. To limit noise and spikes, we apply
a light median-type outlier filter and a short exponential
moving average on both power and velocities. We also
enforce a simple consistency bound between electrical and
mechanical power to reject clearly inconsistent points. The
slope inclination α and the heading direction γ are extracted
from the IMU gravity vector.



C. Calibration and Evaluation Protocol

We follow the approach in Section III. Our goal is to
recover the applied wrench from onboard signals only. Over
short time windows, we compute the electrical power from
the battery readings and read body-frame velocities from the
odometry. This gives the in-plane forces and the yaw torque
without external sensors.

To make the estimation robust, we run a grid of tests that
covers both terrain and motion. Slopes range from mild to
steeper values on a ramp and on natural grass. Headings
include uphill, downhill, cross-slope in both directions, and
several intermediate angles. Speed is kept close to a constant
value along each segment, and we repeat each condition
several times to check repeatability.

The outcome is a dataset of short-window wrench esti-
mates indexed by slope and heading, together with simple
quality checks (repeatability across runs, basic power con-
sistency, and removal of obvious outliers). This dataset is the
basis we use to describe how the wrench varies with terrain
and direction.
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Fig. 3: Energy superposition : measured energy of composite
paths compared with the sum of their parts. Close agreement
supports the additivity assumption used by the model.

D. Superposition and Path Equivalences

The model treats energy as the line integral of a local per-
distance cost; therefore, energies add when path segments
are concatenated. We test this superposition in two settings,
both shown in Figure 3. On the left, the robot executes a
two-segment path (A then B) and we compare its total to a
single straight segment C that connects the same endpoints;
the relative difference is about 4%. On the right, we produce
the same pose change either by “in-place yaw then straight”
(A then B) or by a smooth circular arc C; again the relative
difference is about 13%. Across repeats, the differences stay
within the natural variability of the measurements. These
results are consistent with the per-distance formulation and
support linear accumulation of energy along simple motion
primitives.

E. Power to slope trends

Figure 4 shows measured electrical power as a function
of slope angle α for two hill directions: uphill and downhill.
Each panel reports scatter points and a linear fit for two
body-frame directions of travel (red: vx forward, blue: vy
lateral).

The uphill panel shows power increasing with slope α,
as the gravity component grows. The downhill panel shows
the opposite: power decreases with α, but only slightly. The
robot does not regenerate on descent, so power stays positive;
leg mechanics and footstep control keep it above zero.

In both panels, lateral travel (i.e., side-stepping relative to
the body) costs more than forward travel. This systematic
gap is consistent with legged locomotion: side-stepping uses
less efficient gait patterns, induces extra load transfers, and
requires more corrective foot placement; hence, higher power
is required for the same slope.

Taken together, these linear trends are the data basis for
the heading-aware cost in Section III-B. Uphill and downhill
lines have opposite slopes, as expected from gravity. The
gap between forward and lateral motion shows that effort
depends on direction. In practice, forward alignment is
preferable, while long sideways segments should be avoided.
To complete the calibration, we will add runs at intermediate
headings to fill the (slope, heading) map used for planning.

V. CONCLUSION

We presented a simple energy model for legged locomo-
tion on sloped terrain and demonstrated how it can be identi-
fied using standard onboard measurements. A compact func-
tion learned from field runs, captures the dominant energetic
trends observed in outdoor experiments. Superposition tests
further confirm that energy expenditures combine additively
across trajectory segments, enabling path-level predictions
through integration. Collectively, these results provide prac-
tical insights for energy-aware planning in legged robotics.

Future work will close the loop: we will deploy a lidar-
based slope estimation with online evaluation of the energy
model for adaptive path planning and control. We also plan
to broaden the model, including different velocities and
gait models, and evaluate on diverse ground conditions and
robots.
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Robot Gait Switching for Energy Consumption and Cost
of Transport Management Using Heuristic Algorithms,”
Applied Sciences, vol. 11, no. 3, p. 1339, 3 Feb. 2, 2021.

[13] M. Y. Harper, J. V. Nicholson, E. G. Collins, J. Pusey,
and J. E. Clark, “Energy Efficient Navigation for Run-
ning Legged Robots,” in 2019 International Conference on
Robotics and Automation (ICRA), May 2019, pp. 6770–
6776.

[14] T. Miki, J. Lee, J. Hwangbo, et al., “Learning robust
perceptive locomotion for quadrupedal robots in the wild,”
Science Robotics, vol. 7, no. 62, 2022.

[15] L. Wellhausen and M. Hutter, “Rough terrain navigation
for legged robots using reachability planning and template
learning,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2021.

[16] L. F. P. Oliveira, A. P. Moreira, and M. F. Silva, “Advances
in Agriculture Robotics: A State-of-the-Art Review and
Challenges Ahead,” Robotics, vol. 10, no. 2, p. 52, 2 Jun.
2021.

[17] M. Wei and V. Isler, “Predicting Energy Consumption of
Ground Robots on Uneven Terrains,” IEEE Robotics and
Automation Letters, vol. 7, no. 1, pp. 594–601, 1 Jan. 2022.

[18] J. Heredia, R. J. Kirschner, C. Schlette, et al., “ECDP:
Energy Consumption Disaggregation Pipeline for Energy
Optimization in Lightweight Robots,” IEEE Robotics and
Automation Letters, vol. 8, no. 10, pp. 6107–6114, 10 Oct.
2023.

[19] L. Liu, R. Zhong, A. Willcock, N. Fisher, and W. Shi,
“An Open Approach to Energy-Efficient Autonomous Mo-
bile Robots,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), May 2023, pp. 11 569–
11 575.

[20] T. D. Barfoot, State estimation for robotics. Cambridge
University Press, 2024.


	INTRODUCTION
	RELATED WORK
	THEORY
	Notations and Assumptions
	Energy of a given path

	EXPERIMENTS
	Experimental Setup
	Data Preprocessing
	Calibration and Evaluation Protocol
	Superposition and Path Equivalences
	Power to slope trends

	CONCLUSION

